\(\int \frac {(d^2-e^2 x^2)^{5/2}}{x (d+e x)^2} \, dx\) [163]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [C] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [F(-2)]
   Mupad [F(-1)]

Optimal result

Integrand size = 27, antiderivative size = 96 \[ \int \frac {\left (d^2-e^2 x^2\right )^{5/2}}{x (d+e x)^2} \, dx=d (d-e x) \sqrt {d^2-e^2 x^2}-\frac {1}{3} \left (d^2-e^2 x^2\right )^{3/2}-d^3 \arctan \left (\frac {e x}{\sqrt {d^2-e^2 x^2}}\right )-d^3 \text {arctanh}\left (\frac {\sqrt {d^2-e^2 x^2}}{d}\right ) \]

[Out]

-1/3*(-e^2*x^2+d^2)^(3/2)-d^3*arctan(e*x/(-e^2*x^2+d^2)^(1/2))-d^3*arctanh((-e^2*x^2+d^2)^(1/2)/d)+d*(-e*x+d)*
(-e^2*x^2+d^2)^(1/2)

Rubi [A] (verified)

Time = 0.10 (sec) , antiderivative size = 96, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {866, 1823, 829, 858, 223, 209, 272, 65, 214} \[ \int \frac {\left (d^2-e^2 x^2\right )^{5/2}}{x (d+e x)^2} \, dx=d^3 \left (-\arctan \left (\frac {e x}{\sqrt {d^2-e^2 x^2}}\right )\right )-d^3 \text {arctanh}\left (\frac {\sqrt {d^2-e^2 x^2}}{d}\right )+d (d-e x) \sqrt {d^2-e^2 x^2}-\frac {1}{3} \left (d^2-e^2 x^2\right )^{3/2} \]

[In]

Int[(d^2 - e^2*x^2)^(5/2)/(x*(d + e*x)^2),x]

[Out]

d*(d - e*x)*Sqrt[d^2 - e^2*x^2] - (d^2 - e^2*x^2)^(3/2)/3 - d^3*ArcTan[(e*x)/Sqrt[d^2 - e^2*x^2]] - d^3*ArcTan
h[Sqrt[d^2 - e^2*x^2]/d]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 829

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d + e*x)^(m
 + 1)*(c*e*f*(m + 2*p + 2) - g*c*d*(2*p + 1) + g*c*e*(m + 2*p + 1)*x)*((a + c*x^2)^p/(c*e^2*(m + 2*p + 1)*(m +
 2*p + 2))), x] + Dist[2*(p/(c*e^2*(m + 2*p + 1)*(m + 2*p + 2))), Int[(d + e*x)^m*(a + c*x^2)^(p - 1)*Simp[f*a
*c*e^2*(m + 2*p + 2) + a*c*d*e*g*m - (c^2*f*d*e*(m + 2*p + 2) - g*(c^2*d^2*(2*p + 1) + a*c*e^2*(m + 2*p + 1)))
*x, x], x], x] /; FreeQ[{a, c, d, e, f, g, m}, x] && NeQ[c*d^2 + a*e^2, 0] && GtQ[p, 0] && (IntegerQ[p] ||  !R
ationalQ[m] || (GeQ[m, -1] && LtQ[m, 0])) &&  !ILtQ[m + 2*p, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*
m, 2*p])

Rule 858

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[g/e, Int[(d
+ e*x)^(m + 1)*(a + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a,
c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rule 866

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[d^(2*m)/a
^m, Int[(f + g*x)^n*((a + c*x^2)^(m + p)/(d - e*x)^m), x], x] /; FreeQ[{a, c, d, e, f, g, n, p}, x] && NeQ[e*f
 - d*g, 0] && EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] && EqQ[f, 0] && ILtQ[m, -1] &&  !(IGtQ[n, 0] && ILtQ[m +
n, 0] &&  !GtQ[p, 1])

Rule 1823

Int[(Pq_)*((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{q = Expon[Pq, x], f = Coeff[Pq, x,
 Expon[Pq, x]]}, Simp[f*(c*x)^(m + q - 1)*((a + b*x^2)^(p + 1)/(b*c^(q - 1)*(m + q + 2*p + 1))), x] + Dist[1/(
b*(m + q + 2*p + 1)), Int[(c*x)^m*(a + b*x^2)^p*ExpandToSum[b*(m + q + 2*p + 1)*Pq - b*f*(m + q + 2*p + 1)*x^q
 - a*f*(m + q - 1)*x^(q - 2), x], x], x] /; GtQ[q, 1] && NeQ[m + q + 2*p + 1, 0]] /; FreeQ[{a, b, c, m, p}, x]
 && PolyQ[Pq, x] && ( !IGtQ[m, 0] || IGtQ[p + 1/2, -1])

Rubi steps \begin{align*} \text {integral}& = \int \frac {(d-e x)^2 \sqrt {d^2-e^2 x^2}}{x} \, dx \\ & = -\frac {1}{3} \left (d^2-e^2 x^2\right )^{3/2}-\frac {\int \frac {\left (-3 d^2 e^2+6 d e^3 x\right ) \sqrt {d^2-e^2 x^2}}{x} \, dx}{3 e^2} \\ & = d (d-e x) \sqrt {d^2-e^2 x^2}-\frac {1}{3} \left (d^2-e^2 x^2\right )^{3/2}+\frac {\int \frac {6 d^4 e^4-6 d^3 e^5 x}{x \sqrt {d^2-e^2 x^2}} \, dx}{6 e^4} \\ & = d (d-e x) \sqrt {d^2-e^2 x^2}-\frac {1}{3} \left (d^2-e^2 x^2\right )^{3/2}+d^4 \int \frac {1}{x \sqrt {d^2-e^2 x^2}} \, dx-\left (d^3 e\right ) \int \frac {1}{\sqrt {d^2-e^2 x^2}} \, dx \\ & = d (d-e x) \sqrt {d^2-e^2 x^2}-\frac {1}{3} \left (d^2-e^2 x^2\right )^{3/2}+\frac {1}{2} d^4 \text {Subst}\left (\int \frac {1}{x \sqrt {d^2-e^2 x}} \, dx,x,x^2\right )-\left (d^3 e\right ) \text {Subst}\left (\int \frac {1}{1+e^2 x^2} \, dx,x,\frac {x}{\sqrt {d^2-e^2 x^2}}\right ) \\ & = d (d-e x) \sqrt {d^2-e^2 x^2}-\frac {1}{3} \left (d^2-e^2 x^2\right )^{3/2}-d^3 \tan ^{-1}\left (\frac {e x}{\sqrt {d^2-e^2 x^2}}\right )-\frac {d^4 \text {Subst}\left (\int \frac {1}{\frac {d^2}{e^2}-\frac {x^2}{e^2}} \, dx,x,\sqrt {d^2-e^2 x^2}\right )}{e^2} \\ & = d (d-e x) \sqrt {d^2-e^2 x^2}-\frac {1}{3} \left (d^2-e^2 x^2\right )^{3/2}-d^3 \tan ^{-1}\left (\frac {e x}{\sqrt {d^2-e^2 x^2}}\right )-d^3 \tanh ^{-1}\left (\frac {\sqrt {d^2-e^2 x^2}}{d}\right ) \\ \end{align*}

Mathematica [A] (verified)

Time = 0.30 (sec) , antiderivative size = 125, normalized size of antiderivative = 1.30 \[ \int \frac {\left (d^2-e^2 x^2\right )^{5/2}}{x (d+e x)^2} \, dx=\frac {1}{3} \sqrt {d^2-e^2 x^2} \left (2 d^2-3 d e x+e^2 x^2\right )+2 d^3 \text {arctanh}\left (\frac {\sqrt {-e^2} x}{d}-\frac {\sqrt {d^2-e^2 x^2}}{d}\right )+\frac {d^3 e \log \left (-\sqrt {-e^2} x+\sqrt {d^2-e^2 x^2}\right )}{\sqrt {-e^2}} \]

[In]

Integrate[(d^2 - e^2*x^2)^(5/2)/(x*(d + e*x)^2),x]

[Out]

(Sqrt[d^2 - e^2*x^2]*(2*d^2 - 3*d*e*x + e^2*x^2))/3 + 2*d^3*ArcTanh[(Sqrt[-e^2]*x)/d - Sqrt[d^2 - e^2*x^2]/d]
+ (d^3*e*Log[-(Sqrt[-e^2]*x) + Sqrt[d^2 - e^2*x^2]])/Sqrt[-e^2]

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(543\) vs. \(2(86)=172\).

Time = 0.39 (sec) , antiderivative size = 544, normalized size of antiderivative = 5.67

method result size
default \(\frac {\frac {\left (-e^{2} x^{2}+d^{2}\right )^{\frac {5}{2}}}{5}+d^{2} \left (\frac {\left (-e^{2} x^{2}+d^{2}\right )^{\frac {3}{2}}}{3}+d^{2} \left (\sqrt {-e^{2} x^{2}+d^{2}}-\frac {d^{2} \ln \left (\frac {2 d^{2}+2 \sqrt {d^{2}}\, \sqrt {-e^{2} x^{2}+d^{2}}}{x}\right )}{\sqrt {d^{2}}}\right )\right )}{d^{2}}-\frac {\frac {\left (-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )\right )^{\frac {7}{2}}}{3 d e \left (x +\frac {d}{e}\right )^{2}}+\frac {5 e \left (\frac {\left (-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )\right )^{\frac {5}{2}}}{5}+d e \left (-\frac {\left (-2 \left (x +\frac {d}{e}\right ) e^{2}+2 d e \right ) \left (-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )\right )^{\frac {3}{2}}}{8 e^{2}}+\frac {3 d^{2} \left (-\frac {\left (-2 \left (x +\frac {d}{e}\right ) e^{2}+2 d e \right ) \sqrt {-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )}}{4 e^{2}}+\frac {d^{2} \arctan \left (\frac {\sqrt {e^{2}}\, x}{\sqrt {-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )}}\right )}{2 \sqrt {e^{2}}}\right )}{4}\right )\right )}{3 d}}{e d}-\frac {\frac {\left (-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )\right )^{\frac {5}{2}}}{5}+d e \left (-\frac {\left (-2 \left (x +\frac {d}{e}\right ) e^{2}+2 d e \right ) \left (-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )\right )^{\frac {3}{2}}}{8 e^{2}}+\frac {3 d^{2} \left (-\frac {\left (-2 \left (x +\frac {d}{e}\right ) e^{2}+2 d e \right ) \sqrt {-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )}}{4 e^{2}}+\frac {d^{2} \arctan \left (\frac {\sqrt {e^{2}}\, x}{\sqrt {-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )}}\right )}{2 \sqrt {e^{2}}}\right )}{4}\right )}{d^{2}}\) \(544\)

[In]

int((-e^2*x^2+d^2)^(5/2)/x/(e*x+d)^2,x,method=_RETURNVERBOSE)

[Out]

1/d^2*(1/5*(-e^2*x^2+d^2)^(5/2)+d^2*(1/3*(-e^2*x^2+d^2)^(3/2)+d^2*((-e^2*x^2+d^2)^(1/2)-d^2/(d^2)^(1/2)*ln((2*
d^2+2*(d^2)^(1/2)*(-e^2*x^2+d^2)^(1/2))/x))))-1/e/d*(1/3/d/e/(x+d/e)^2*(-(x+d/e)^2*e^2+2*d*e*(x+d/e))^(7/2)+5/
3*e/d*(1/5*(-(x+d/e)^2*e^2+2*d*e*(x+d/e))^(5/2)+d*e*(-1/8*(-2*(x+d/e)*e^2+2*d*e)/e^2*(-(x+d/e)^2*e^2+2*d*e*(x+
d/e))^(3/2)+3/4*d^2*(-1/4*(-2*(x+d/e)*e^2+2*d*e)/e^2*(-(x+d/e)^2*e^2+2*d*e*(x+d/e))^(1/2)+1/2*d^2/(e^2)^(1/2)*
arctan((e^2)^(1/2)*x/(-(x+d/e)^2*e^2+2*d*e*(x+d/e))^(1/2))))))-1/d^2*(1/5*(-(x+d/e)^2*e^2+2*d*e*(x+d/e))^(5/2)
+d*e*(-1/8*(-2*(x+d/e)*e^2+2*d*e)/e^2*(-(x+d/e)^2*e^2+2*d*e*(x+d/e))^(3/2)+3/4*d^2*(-1/4*(-2*(x+d/e)*e^2+2*d*e
)/e^2*(-(x+d/e)^2*e^2+2*d*e*(x+d/e))^(1/2)+1/2*d^2/(e^2)^(1/2)*arctan((e^2)^(1/2)*x/(-(x+d/e)^2*e^2+2*d*e*(x+d
/e))^(1/2)))))

Fricas [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 95, normalized size of antiderivative = 0.99 \[ \int \frac {\left (d^2-e^2 x^2\right )^{5/2}}{x (d+e x)^2} \, dx=2 \, d^{3} \arctan \left (-\frac {d - \sqrt {-e^{2} x^{2} + d^{2}}}{e x}\right ) + d^{3} \log \left (-\frac {d - \sqrt {-e^{2} x^{2} + d^{2}}}{x}\right ) + \frac {1}{3} \, {\left (e^{2} x^{2} - 3 \, d e x + 2 \, d^{2}\right )} \sqrt {-e^{2} x^{2} + d^{2}} \]

[In]

integrate((-e^2*x^2+d^2)^(5/2)/x/(e*x+d)^2,x, algorithm="fricas")

[Out]

2*d^3*arctan(-(d - sqrt(-e^2*x^2 + d^2))/(e*x)) + d^3*log(-(d - sqrt(-e^2*x^2 + d^2))/x) + 1/3*(e^2*x^2 - 3*d*
e*x + 2*d^2)*sqrt(-e^2*x^2 + d^2)

Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 4.82 (sec) , antiderivative size = 270, normalized size of antiderivative = 2.81 \[ \int \frac {\left (d^2-e^2 x^2\right )^{5/2}}{x (d+e x)^2} \, dx=d^{2} \left (\begin {cases} \frac {d^{2}}{e x \sqrt {\frac {d^{2}}{e^{2} x^{2}} - 1}} - d \operatorname {acosh}{\left (\frac {d}{e x} \right )} - \frac {e x}{\sqrt {\frac {d^{2}}{e^{2} x^{2}} - 1}} & \text {for}\: \left |{\frac {d^{2}}{e^{2} x^{2}}}\right | > 1 \\- \frac {i d^{2}}{e x \sqrt {- \frac {d^{2}}{e^{2} x^{2}} + 1}} + i d \operatorname {asin}{\left (\frac {d}{e x} \right )} + \frac {i e x}{\sqrt {- \frac {d^{2}}{e^{2} x^{2}} + 1}} & \text {otherwise} \end {cases}\right ) - 2 d e \left (\begin {cases} \frac {d^{2} \left (\begin {cases} \frac {\log {\left (- 2 e^{2} x + 2 \sqrt {- e^{2}} \sqrt {d^{2} - e^{2} x^{2}} \right )}}{\sqrt {- e^{2}}} & \text {for}\: d^{2} \neq 0 \\\frac {x \log {\left (x \right )}}{\sqrt {- e^{2} x^{2}}} & \text {otherwise} \end {cases}\right )}{2} + \frac {x \sqrt {d^{2} - e^{2} x^{2}}}{2} & \text {for}\: e^{2} \neq 0 \\x \sqrt {d^{2}} & \text {otherwise} \end {cases}\right ) + e^{2} \left (\begin {cases} - \frac {d^{2} \sqrt {d^{2} - e^{2} x^{2}}}{3 e^{2}} + \frac {x^{2} \sqrt {d^{2} - e^{2} x^{2}}}{3} & \text {for}\: e^{2} \neq 0 \\\frac {x^{2} \sqrt {d^{2}}}{2} & \text {otherwise} \end {cases}\right ) \]

[In]

integrate((-e**2*x**2+d**2)**(5/2)/x/(e*x+d)**2,x)

[Out]

d**2*Piecewise((d**2/(e*x*sqrt(d**2/(e**2*x**2) - 1)) - d*acosh(d/(e*x)) - e*x/sqrt(d**2/(e**2*x**2) - 1), Abs
(d**2/(e**2*x**2)) > 1), (-I*d**2/(e*x*sqrt(-d**2/(e**2*x**2) + 1)) + I*d*asin(d/(e*x)) + I*e*x/sqrt(-d**2/(e*
*2*x**2) + 1), True)) - 2*d*e*Piecewise((d**2*Piecewise((log(-2*e**2*x + 2*sqrt(-e**2)*sqrt(d**2 - e**2*x**2))
/sqrt(-e**2), Ne(d**2, 0)), (x*log(x)/sqrt(-e**2*x**2), True))/2 + x*sqrt(d**2 - e**2*x**2)/2, Ne(e**2, 0)), (
x*sqrt(d**2), True)) + e**2*Piecewise((-d**2*sqrt(d**2 - e**2*x**2)/(3*e**2) + x**2*sqrt(d**2 - e**2*x**2)/3,
Ne(e**2, 0)), (x**2*sqrt(d**2)/2, True))

Maxima [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 116, normalized size of antiderivative = 1.21 \[ \int \frac {\left (d^2-e^2 x^2\right )^{5/2}}{x (d+e x)^2} \, dx=-\frac {d^{3} e \arcsin \left (\frac {e^{2} x}{d \sqrt {e^{2}}}\right )}{\sqrt {e^{2}}} - d^{3} \log \left (\frac {2 \, d^{2}}{{\left | x \right |}} + \frac {2 \, \sqrt {-e^{2} x^{2} + d^{2}} d}{{\left | x \right |}}\right ) - \sqrt {-e^{2} x^{2} + d^{2}} d e x + \sqrt {-e^{2} x^{2} + d^{2}} d^{2} - \frac {1}{3} \, {\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {3}{2}} \]

[In]

integrate((-e^2*x^2+d^2)^(5/2)/x/(e*x+d)^2,x, algorithm="maxima")

[Out]

-d^3*e*arcsin(e^2*x/(d*sqrt(e^2)))/sqrt(e^2) - d^3*log(2*d^2/abs(x) + 2*sqrt(-e^2*x^2 + d^2)*d/abs(x)) - sqrt(
-e^2*x^2 + d^2)*d*e*x + sqrt(-e^2*x^2 + d^2)*d^2 - 1/3*(-e^2*x^2 + d^2)^(3/2)

Giac [F(-2)]

Exception generated. \[ \int \frac {\left (d^2-e^2 x^2\right )^{5/2}}{x (d+e x)^2} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate((-e^2*x^2+d^2)^(5/2)/x/(e*x+d)^2,x, algorithm="giac")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Limit: Max order reached or unable to make series expansion Error: Bad Argument Value

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (d^2-e^2 x^2\right )^{5/2}}{x (d+e x)^2} \, dx=\int \frac {{\left (d^2-e^2\,x^2\right )}^{5/2}}{x\,{\left (d+e\,x\right )}^2} \,d x \]

[In]

int((d^2 - e^2*x^2)^(5/2)/(x*(d + e*x)^2),x)

[Out]

int((d^2 - e^2*x^2)^(5/2)/(x*(d + e*x)^2), x)